- 1. A series circuit contains only _____ path for the electric current to flow.
 - a) one b) two c) three
- 2. If a break occurs in a series circuit, the flow of the current will stop ______ along the path of the circuit.
- 3. If you know the voltage and resistance of the circuit, you may use _____ Law to calculate the current in a series circuit.
- 4. You may ______ the individual resistances in a series circuit to obtain the total resistance.
 - a) multiply b) add c) divide
- 5. What is a voltage drop?
- 6. If power is lost as a current flows through a resistor (a light bulb, for example), how does the circuit regain the power to continue to light the bulb?
- 7. Define Kirchhoff's voltage law.
- 8. Why do we use parallel instead of series circuitry in houses?
- 9. Define Kirchhoff's current law.
- 10. Sketch the picture of the parallel circuit with 2 batteries and three light bulbs at the bottom of the page. Include labels and arrows.

11. The ______ is the same across each branch of a parallel circuit.

a) resistance b) voitage c) current	a)	resistance	b) voltage	c) current
-------------------------------------	----	------------	------------	------------

12. The total current in a parallel circuit is the sum of the ______ in each branch.

a) resistance b) voltage c) currents

- 13. The total resistance in a parallel circuit is ______ than in a series circuit.
- 14. Create a table that compares the differences between current, resistance, and voltage in a series and parallel circuit.

15. When a large amount of current flows through a branch with little or no resistance is called a ______.